Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest.

Identifieur interne : 001139 ( Main/Exploration ); précédent : 001138; suivant : 001140

Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest.

Auteurs : Niles J. Hasselquist ; Daniel B. Metcalfe ; Erich Inselsbacher ; Zsofia Stangl ; Ram Oren ; Torgny N Sholm ; Peter Högberg

Source :

RBID : pubmed:27220217

Descripteurs français

English descriptors

Abstract

The central role that ectomycorrhizal (EM) symbioses play in the structure and function of boreal forests pivots around the common assumption that carbon (C) and nitrogen (N) are exchanged at rates favorable for plant growth. However, this may not always be the case. It has been hypothesized that the benefits mycorrhizal fungi convey to their host plants strongly depends upon the availability of C and N, both of which are rapidly changing as a result of intensified human land use and climate change. Using large-scale shading and N addition treatments, we assessed the independent and interactive effects of changes in C and N supply on the transfer of N in intact EM associations with -15 yr. old Scots pine trees. To assess the dynamics of N transfer in EM symbioses, we added trace amounts of highly enriched 5NO3(-) label to the EM-dominated mor-layer and followed the fate of the 15N label in tree foliage, fungal chitin on EM root tips, and EM sporocarps. Despite no change in leaf biomass, shading resulted in reduced tree C uptake, ca. 40% lower fungal biomass on EM root tips, and greater 15N label in tree foliage compared to unshaded control plots, where more 15N label was found in fungal biomass on EM colonized root tips. Short-term addition of N shifted the incorporation of 15N label from EM fungi to tree foliage, despite no significant changes in below-ground tree C allocation to EM fungi. Contrary to the common assumption that C and N are exchanged at rates favorable for plant growth, our results show for the first time that under N-limited conditions greater C allocation to EM fungi in the field results in reduced, not increased, N transfer to host trees. Moreover, given the ubiquitous nature of mycorrhizal symbioses, our results stress the need to incorporate mycorrhizal dynamics into process-based ecosystem models to better predict forest C and N cycles in light of global climate change.

DOI: 10.1890/15-1222.1
PubMed: 27220217


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest.</title>
<author>
<name sortKey="Hasselquist, Niles J" sort="Hasselquist, Niles J" uniqKey="Hasselquist N" first="Niles J" last="Hasselquist">Niles J. Hasselquist</name>
</author>
<author>
<name sortKey="Metcalfe, Daniel B" sort="Metcalfe, Daniel B" uniqKey="Metcalfe D" first="Daniel B" last="Metcalfe">Daniel B. Metcalfe</name>
</author>
<author>
<name sortKey="Inselsbacher, Erich" sort="Inselsbacher, Erich" uniqKey="Inselsbacher E" first="Erich" last="Inselsbacher">Erich Inselsbacher</name>
</author>
<author>
<name sortKey="Stangl, Zsofia" sort="Stangl, Zsofia" uniqKey="Stangl Z" first="Zsofia" last="Stangl">Zsofia Stangl</name>
</author>
<author>
<name sortKey="Oren, Ram" sort="Oren, Ram" uniqKey="Oren R" first="Ram" last="Oren">Ram Oren</name>
</author>
<author>
<name sortKey="N Sholm, Torgny" sort="N Sholm, Torgny" uniqKey="N Sholm T" first="Torgny" last="N Sholm">Torgny N Sholm</name>
</author>
<author>
<name sortKey="Hogberg, Peter" sort="Hogberg, Peter" uniqKey="Hogberg P" first="Peter" last="Högberg">Peter Högberg</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27220217</idno>
<idno type="pmid">27220217</idno>
<idno type="doi">10.1890/15-1222.1</idno>
<idno type="wicri:Area/Main/Corpus">001060</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001060</idno>
<idno type="wicri:Area/Main/Curation">001060</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001060</idno>
<idno type="wicri:Area/Main/Exploration">001060</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest.</title>
<author>
<name sortKey="Hasselquist, Niles J" sort="Hasselquist, Niles J" uniqKey="Hasselquist N" first="Niles J" last="Hasselquist">Niles J. Hasselquist</name>
</author>
<author>
<name sortKey="Metcalfe, Daniel B" sort="Metcalfe, Daniel B" uniqKey="Metcalfe D" first="Daniel B" last="Metcalfe">Daniel B. Metcalfe</name>
</author>
<author>
<name sortKey="Inselsbacher, Erich" sort="Inselsbacher, Erich" uniqKey="Inselsbacher E" first="Erich" last="Inselsbacher">Erich Inselsbacher</name>
</author>
<author>
<name sortKey="Stangl, Zsofia" sort="Stangl, Zsofia" uniqKey="Stangl Z" first="Zsofia" last="Stangl">Zsofia Stangl</name>
</author>
<author>
<name sortKey="Oren, Ram" sort="Oren, Ram" uniqKey="Oren R" first="Ram" last="Oren">Ram Oren</name>
</author>
<author>
<name sortKey="N Sholm, Torgny" sort="N Sholm, Torgny" uniqKey="N Sholm T" first="Torgny" last="N Sholm">Torgny N Sholm</name>
</author>
<author>
<name sortKey="Hogberg, Peter" sort="Hogberg, Peter" uniqKey="Hogberg P" first="Peter" last="Högberg">Peter Högberg</name>
</author>
</analytic>
<series>
<title level="j">Ecology</title>
<idno type="ISSN">0012-9658</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Forests (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen (metabolism)</term>
<term>Pinus sylvestris (microbiology)</term>
<term>Pinus sylvestris (physiology)</term>
<term>Symbiosis (MeSH)</term>
<term>Trees (microbiology)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (microbiologie)</term>
<term>Arbres (physiologie)</term>
<term>Azote (métabolisme)</term>
<term>Carbone (métabolisme)</term>
<term>Forêts (MeSH)</term>
<term>Mycorhizes (physiologie)</term>
<term>Pinus sylvestris (microbiologie)</term>
<term>Pinus sylvestris (physiologie)</term>
<term>Symbiose (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Arbres</term>
<term>Pinus sylvestris</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Pinus sylvestris</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Mycorhizes</term>
<term>Pinus sylvestris</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
<term>Pinus sylvestris</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Forests</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Forêts</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The central role that ectomycorrhizal (EM) symbioses play in the structure and function of boreal forests pivots around the common assumption that carbon (C) and nitrogen (N) are exchanged at rates favorable for plant growth. However, this may not always be the case. It has been hypothesized that the benefits mycorrhizal fungi convey to their host plants strongly depends upon the availability of C and N, both of which are rapidly changing as a result of intensified human land use and climate change. Using large-scale shading and N addition treatments, we assessed the independent and interactive effects of changes in C and N supply on the transfer of N in intact EM associations with -15 yr. old Scots pine trees. To assess the dynamics of N transfer in EM symbioses, we added trace amounts of highly enriched 5NO3(-) label to the EM-dominated mor-layer and followed the fate of the 15N label in tree foliage, fungal chitin on EM root tips, and EM sporocarps. Despite no change in leaf biomass, shading resulted in reduced tree C uptake, ca. 40% lower fungal biomass on EM root tips, and greater 15N label in tree foliage compared to unshaded control plots, where more 15N label was found in fungal biomass on EM colonized root tips. Short-term addition of N shifted the incorporation of 15N label from EM fungi to tree foliage, despite no significant changes in below-ground tree C allocation to EM fungi. Contrary to the common assumption that C and N are exchanged at rates favorable for plant growth, our results show for the first time that under N-limited conditions greater C allocation to EM fungi in the field results in reduced, not increased, N transfer to host trees. Moreover, given the ubiquitous nature of mycorrhizal symbioses, our results stress the need to incorporate mycorrhizal dynamics into process-based ecosystem models to better predict forest C and N cycles in light of global climate change.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27220217</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0012-9658</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>97</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Ecology</Title>
<ISOAbbreviation>Ecology</ISOAbbreviation>
</Journal>
<ArticleTitle>Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest.</ArticleTitle>
<Pagination>
<MedlinePgn>1012-22</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The central role that ectomycorrhizal (EM) symbioses play in the structure and function of boreal forests pivots around the common assumption that carbon (C) and nitrogen (N) are exchanged at rates favorable for plant growth. However, this may not always be the case. It has been hypothesized that the benefits mycorrhizal fungi convey to their host plants strongly depends upon the availability of C and N, both of which are rapidly changing as a result of intensified human land use and climate change. Using large-scale shading and N addition treatments, we assessed the independent and interactive effects of changes in C and N supply on the transfer of N in intact EM associations with -15 yr. old Scots pine trees. To assess the dynamics of N transfer in EM symbioses, we added trace amounts of highly enriched 5NO3(-) label to the EM-dominated mor-layer and followed the fate of the 15N label in tree foliage, fungal chitin on EM root tips, and EM sporocarps. Despite no change in leaf biomass, shading resulted in reduced tree C uptake, ca. 40% lower fungal biomass on EM root tips, and greater 15N label in tree foliage compared to unshaded control plots, where more 15N label was found in fungal biomass on EM colonized root tips. Short-term addition of N shifted the incorporation of 15N label from EM fungi to tree foliage, despite no significant changes in below-ground tree C allocation to EM fungi. Contrary to the common assumption that C and N are exchanged at rates favorable for plant growth, our results show for the first time that under N-limited conditions greater C allocation to EM fungi in the field results in reduced, not increased, N transfer to host trees. Moreover, given the ubiquitous nature of mycorrhizal symbioses, our results stress the need to incorporate mycorrhizal dynamics into process-based ecosystem models to better predict forest C and N cycles in light of global climate change.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hasselquist</LastName>
<ForeName>Niles J</ForeName>
<Initials>NJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Metcalfe</LastName>
<ForeName>Daniel B</ForeName>
<Initials>DB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Inselsbacher</LastName>
<ForeName>Erich</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stangl</LastName>
<ForeName>Zsofia</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oren</LastName>
<ForeName>Ram</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Näsholm</LastName>
<ForeName>Torgny</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Högberg</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecology</MedlineTA>
<NlmUniqueID>0043541</NlmUniqueID>
<ISSNLinking>0012-9658</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="Y">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D041605" MajorTopicYN="N">Pinus sylvestris</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27220217</ArticleId>
<ArticleId IdType="doi">10.1890/15-1222.1</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Hasselquist, Niles J" sort="Hasselquist, Niles J" uniqKey="Hasselquist N" first="Niles J" last="Hasselquist">Niles J. Hasselquist</name>
<name sortKey="Hogberg, Peter" sort="Hogberg, Peter" uniqKey="Hogberg P" first="Peter" last="Högberg">Peter Högberg</name>
<name sortKey="Inselsbacher, Erich" sort="Inselsbacher, Erich" uniqKey="Inselsbacher E" first="Erich" last="Inselsbacher">Erich Inselsbacher</name>
<name sortKey="Metcalfe, Daniel B" sort="Metcalfe, Daniel B" uniqKey="Metcalfe D" first="Daniel B" last="Metcalfe">Daniel B. Metcalfe</name>
<name sortKey="N Sholm, Torgny" sort="N Sholm, Torgny" uniqKey="N Sholm T" first="Torgny" last="N Sholm">Torgny N Sholm</name>
<name sortKey="Oren, Ram" sort="Oren, Ram" uniqKey="Oren R" first="Ram" last="Oren">Ram Oren</name>
<name sortKey="Stangl, Zsofia" sort="Stangl, Zsofia" uniqKey="Stangl Z" first="Zsofia" last="Stangl">Zsofia Stangl</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001139 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001139 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27220217
   |texte=   Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27220217" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020